
Created:August 18, 1994
Modified:January 16, 1997

Software Programming Standards SPE-C-G009/05 1 of 39

Gemini
Controls
Group
Report

Software Programming
Standards

Jim Wright, Bret Goodrich, Steve Wampler

SPE-C-G009/05

This report details Gemini Project Software
Programming Standards.

1.0 Introduction 5
1.1 Purpose 5
1.2 Scope 5
1.3 Previous Standards 5
1.4 Applicable Documents 6
1.5 Glossary 7
1.6 Revision History 8

UNIX Development and VME Support 9

2.0 Language Selection 9
2.1 Compiled Languages 9
2.2 Object Oriented Alternative 9
2.3 Interpreted Languages 9
2.4 Imaging Language Alternative 9
2.5 Emergency Use Alternatives 9
2.6 Pre-existing Code 10
2.7 Preprocessors 10

3.0 Coding Practices 11
3.1 Modular Coding 11
3.2 Function Declarations 11
3.3 Data Declarations 11
3.4 Include Files 11
3.5 Hardware Access 13

2 of 39 SPE-C-G009/05 Software Programming Standards

3.6 Errors 13
3.7 GOTO 13
3.8 Style Considerations 13
3.9 Comments 13
3.10 Computer Error Checking 14
3.11 Numeric Constants 14
3.12 Structure Definitions 14
3.13 Argument Passing 14
3.14 Function Status Return 14
3.15 Templates 14

4.0 Module Layout 15
4.1 Version Control 15
4.2 Module Header 15
4.3 Function Layout 16

4.3.1 Function Header 16
4.3.2 Function Body 18

5.0 Source Code Format 20

6.0 Naming Conventions 20
6.1 File Names 20
6.2 Programming Construct Names 21

7.0 Tcl/Tk Style Guide 21
7.1 Namespace Pollution 22
7.2 Built-in Features of Tcl 22

7.2.1 Dynamic Loading 22
7.2.2 -textvariable 22
7.2.3 trace 22
7.2.4 Loading 22

7.3 Widgets 22
7.3.1 Meta Widgets 22
7.3.2 Widget Groups 22
7.3.3 Widget References 23
7.3.4 Re-usable Functions 23
7.3.5 Visual Style 23

7.4 Version Dependencies 23

VME Specific Development 24

8.0 EPICS Development 24
8.1 Database Creation 24
8.2 Name Conventions 24

8.2.1 System Prefixes 25
8.2.2 Instruments and Detector Controllers 25

Software Programming Standards SPE-C-G009/05 3 of 39

8.2.3 Wavefront Sensors 26
8.3 EPICS Engineering Screens 26

8.3.1 dm Displays 26
8.3.2 dm Colors 27
8.3.3 dm Color Rules 28

8.4 Initialization of EPICS Databases 29
8.5 Programming in EPICS 29

8.5.1 EPICS database code 30
8.5.2 Writing EPICS Support Routines 31
8.5.3 State Notation Language Support 31

8.6 EPICS Lock-sets 32

9.0 UAE Development 32
9.1 Setting up UAE 32
9.2 Locating Files 33

9.2.1 Start-up files 33
9.2.2 Source code 33
9.2.3 Include Files 33
9.2.4 Parameter Files 33
9.2.5 CapFast Schematics and Symbols 33
9.2.6 Record and device support 34

9.3 Distributing a UAE application 34
9.3.1 Creating a release 34
9.3.2 Unpacking a release 34

10.0 CapFast Development 34
10.1 Hierarchal Capabilities 35

Development Support 36

11.0 Other Tools 36
11.1 WFLMAN 36
11.2 Indent 36

12.0 Installation Directory Structure 37
12.1 Developed Code 37
12.2 Tools 37

12.2.1 EPICS 37
12.2.2 VxWorks 37
12.2.3 GNU Tools 38
12.2.4 Tcl/Tk 38
12.2.5 Other Tools 38

12.3 Observing Home Directories 38
12.4 User Home Directories 38

13.0 Makefile Standard 38
13.0.1 Gemini Make Include 38

4 of 39 SPE-C-G009/05 Software Programming Standards

13.0.2 Work Package Makefiles 39

14.0 Source Control 39
14.1 Gemini Standards 39
14.2 Gemini Master Source Distribution 39

Introduction

Software Programming Standards SPE-C-G009/05 5 of 39

1.0 Introduction

1.1 Purpose

The purpose of this document is to establish software programming standards and
practices to be used in the development and maintenance of the Gemini software. Those
identified as standards by the use of the words “must/shall” will be audited for
compliance. Those identified as practices by the use of the words “should/may” are
included only as good programming conventions and techniques or as objectives to be
employed. These standard and practices achieve the following objectives:

• Insure that design, coding, and testing are accomplished in a manner which complies
with the Gemini Software Management Plan.

• Establish terminology which allows for production of a well-structured modular
software design that is traceable to and will satisfy system requirements.

• Establish appropriate uniformity of format and program annotation for ease of
maintainability.

• Establish coding standards which minimize interface problems and maximize the
effectiveness of the programs generated.

As there are several systems commercially available (CodeCheck, et cetera) that will do
auditing of coding formats the GPCS will be able to perform compliance tests on the
code generated by the WPR during the acceptance test phase of each work package.

1.2 Scope

The standards and practices in this document apply to software developed by Gemini
and any parties explicitly contracted to create Gemini packages and modules. This
document specifically addresses the coding standards to be employed.

Other software development issues are dealt with in other Gemini documents,
specifically:

• Standards to be employed during the design phase of the software development [1].

• Standards to be employed during the testing phases of the software development [4].

• Documentation standards for software related documents [2].

1.3 Previous Standards

All code written prior to the release of this document shall conform to either version 03
(previous) or version 04 (current) of the Software Programming Standards. If code must
be modified to bring it in line with one of these standards, you are strongly encouraged
to follow the most recent version of the SPS. Code which was written prior to this
version of the SPS (version 04, December 1996) may abide by the standards set forth in
the previous version of this document. However, this version of the SPS does not
significantly differ from previous versions. It clarifies a number of issues, fixes a large

Introduction

6 of 39 SPE-C-G009/05 Software Programming Standards

number of typographical and formatting errors in the document, and even relaxes the
standards in a number of areas.

All code written after the release of this SPS shall abide by the standards set forth
herein.

1.4 Applicable Documents

The following documents are official Gemini documents, referred to in the text, even if
not all of them exist yet. These documents will be provided to all developers of Gemini
software both to provide useful background and to provide the environment under
which the Gemini software will be generated.

Software specifications and management

[1] (SRS) Gemini Software Requirements Specification, [SPE-C-G0014]

[2] (SMP) Gemini Software and Controls Management Plan

[3] (SCCP) Gemini Software Configuration Control Plan, [SPE-C-G0011]

[4] (STP) Gemini Software Test Plan

[5] (SDD) Gemini Software Design Description, [SPE-C-0037]

[6] Gemini Acronym Glossary, Ruth Kneale, [PG-S-G0008]

[7] Large-Scale C++ Software Design, John Lakos, Addison Wesley

[8] Software Engineering for ESO’s VLT Project, G. Filippi

[9] Very Large Telescope Programme - Software Management Plan, G. Filippi,
[VLT-PLA-ESO-00000-0006]

[10] VLT Software Release 1 (Common Software) Overview and Installation Manual,
G.Filippi, [VLT-MAN-ESO-17200-0642]

Tcl/Tk information

[11] Tcl and the Tk Toolkit, John K. Ousterhout, University of California Berkeley

[12] Tcl/Tk Engineering Manual, ftp://ftp.sunlabs.com/pub/tcl/engManual.tar.Z,
John K. Ousterhout, Sun Microsystems Inc.

[13] http://www.sco.com/Technology/tcl/Tcl.html, Tcl WWW Info

[14] http://www.sunlabs.com/research/tcl/, Tcl/Tk Project at Sun Microsystems

[15] ftp://ftp.smli.com/pub/tcl/, Main Tcl/Tk distribution

[16] http://www.NeoSoft.com/tcl/, Contributed Tcl/Tk sources

EPICS information

[17] http://www.atdiv.lanl.gov/aot8/epics/epicshm.htm, Los Alamos National Lab
site for EPICS information

[18] http://www.aps.anl.gov/asd/controls/epics/EpicsDocumentation/WWW-
Pages/EpicsFrames.html, Argonne National Lab site for EPICS information

[19] http://www.cebaf.gov/accel/documents/epics_doc.html, Continuous Electron
Beam Accelerator Facility site for EPICS information

Introduction

Software Programming Standards SPE-C-G009/05 7 of 39

[20] http://csg.lbl.gov/CSG.html, Lawrence Berkeley National Lab site for EPICS
information

[21] ICD 13 -Standard Controller, Bret Goodrich and Andrew Johnson

[22] ICD 1.9/3.1 - The OCS/CICS Interface, Steven Beard, ROE

[23] Keck EPICS Programming Manual, Keck Software Document 82, W. F. Lupton

[24] EPICS Input Output Controller Record Reference Manual, Janet B. Anderson and
Martin R. Kraimer, Argonne National Laboratory, December 1994

[25] CapFast Electronic Circuit Design CAE User’s Guide, Phase Three Logic, Inc.,
1991

[26] EPICS Input / Output Controller (IOC) Application Developer’s Guide, Martin
R. Kraimer, Argonne National Laboratory, November 1994

[27] http://www.atdiv.lanl.gov/aot8/epics/OPI/opintro-1.html, EDD/DM USER’S
MANUAL, Version 2.3, Philip Stanley, Los Alamos National Laboratory, Novem-
ber, 1996

[28] State Notation Language and Sequencer’s User’s Guide, Version 1.9, Andy
Kozubal, Los Alamos National Laboratory

[29] http://www.atdiv.lanl.gov/aot8/epics/capfast/capcomref.html, CapFast Com-
mand Reference, Los Alamos National Laboratory

Supporting tools information

[30] Version Management with CVS, Per Cederqvist

[31] http://www.cyclic.com/, CVS information

[32] http://www.iac.honeywell.com/Pub/Tech/CM/, Configuration Management
FAQ

[33] RCS - A System for Version Control, Walter Tichy, Purdue University

[34] ftp://cs.purdue.edu/pub/RCS/, main RCS distribution

[35] GNU Make - A Program for Directing Recompilation, Richard M. Stallman and
Roland McGrath

[36] ftp://prep.ai.mit.edu/pub/gnu/, main GNU distribution

[37] ftp://ftp.keck.hawaii.edu/pub/wlupton, main WFLMAN distribution

Some of these documents were not yet ready at the time this specification was written.
However, they belong to the currently planned set of documents for Gemini.

1.5 Glossary

CICS - Core Instrument Control System work package

OCC - Optical Components Controller - that part of the instrument control system
that controls the non-detector portions of the instrument

OIWFS - On-instrument WFS - the Wavefront Sensor located in the instrument

TCS - Telescope Control System

WFS - Wavefront sensor

Introduction

8 of 39 SPE-C-G009/05 Software Programming Standards

1.6 Revision History

• August 1993, version 01, original revision

• August 1994, version 02, convert to Framemaker

• January 1996, version 03, update

• December 1996, version 04, revise and extend most of the document

• January 1997, version 05, release to change control

Language Selection

Software Programming Standards SPE-C-G009/05 9 of 39

Part I UNIX Development and VME Support

This part of the Software Programming Standards provides information on
programming language selection, coding practices and style, module layout and
formatting, and other related issues. Since the code development for EPICS is actually
done under a UNIX cross-compilation environment, most of this part will also apply to
EPICS developers.

2.0 Language Selection

2.1 Compiled Languages

ANSI C is the language that shall be used for all new work. The traditional K&R C is
not found to be a standard in practice. No language extensions (asm directives, et
cetera) are allowed. Specifically, the GNU gcc ANSI C compiler is required for both
native UNIX work and for VxWorks cross-development. No errors or warnings of any
type are allowed during the compilation process using the required -ansi,
-pedantic, and -Wall options.

2.2 Object Oriented Alternative

C++ is an acceptable alternative to ANSI C. Its concept of object-oriented programming
may benefit some later projects. Specifically, the GNU g++ C++ compiler is required
for both native and cross-development object-oriented applications. Any use of C++
should be explicitly justified by the WPR.

2.3 Interpreted Languages

Tcl/Tk (Tool Command Language) is the language that shall be used for all interpreted
applications. This includes incremental Tcl/Tk, also known as [incr tcl] and [incr tk].
See Section 7.0, “Tcl/Tk Style Guide,” on page 21 for more information on Tcl/Tk.

2.4 Imaging Language Alternative

PVWAVE is an acceptable alternative to Tcl when it can be shown that the task benefits
from existing support in PVWAVE (image analysis applications, image rendering, et
cetera). Any use of PVWAVE should be explicitly justified by the WPR

2.5 Emergency Use Alternatives

In the event that C is not available on the target machine, use the following rules to help
select a language:

• First choice is a modern, structured language with object oriented concepts.

• Second choice is a traditional, less structured language such as FORTRAN.

• Avoid use of assembler if at all possible. If at all possible avoid in-line use of
assembler in high-level languages. Most high level languages will be significantly
easier and more reliable during the development cycle. Use assembler only in small

Language Selection

10 of 39 SPE-C-G009/05 Software Programming Standards

subroutines which require ultimate speed or hardware accessibility. Such
subroutines shall be well commented, especially in regard to parameter passing.

• Use of BASIC, FORTH and system manufacturer proprietary languages is
unacceptable.

• Use of the C shell or derivatives for shell scripts is unacceptable. All shell scripts
should use the Bourne shell. If a need is documented by the WPR, use of a POSIX
compatible shell (such as the Korn shell) is acceptable. However, no non-POSIX
features or extensions may be used.

Any use of languages outside of ANSI C, C++, Tcl/Tk and PVWAVE in permanent
code shall be approved by the Gemini Controls Group prior to their use in the project.

2.6 Pre-existing Code

When working on or porting existing code, individual decisions should be made on
whether old sources should be kept in the original language or converted to the project
standard.

Some points to consider are:

• The existence of a good compiler for the original language may allow keeping the
original code.

• If the original code cannot be easily compiled on the new machine, consider
conversion before extensive modifications in the original language.

• A good calling interface between new C programs and subroutines in another
language may allow keeping the original code.

• If the subroutine calling and parameter passing is difficult, or requires changing
original code, consider conversion to C.

2.7 Preprocessors

The use of programming tools that act as sophisticated preprocessors to C shall be
checked in advance to ensure appropriate support for the tool exists within the Gemini
Project. The following GNU tools are recommended by the Gemini Project Office.

TABLE 1. GNU Tools

GNU Tool Function

gawk Pattern scanning and processing language

flex Lexical analysis program generator

bison Yet another compiler-compiler

indent C source code formatter

make Maintain, update, and regenerate related programs and files

Coding Practices

Software Programming Standards SPE-C-G009/05 11 of 39

3.0 Coding Practices

The following practices and standards apply not only to C programs under UNIX, but
also to C programs for EPICS, Tcl/Tk and PVWAVE programs. The book Large Scale
C++ Software Design [7] provides the guidelines for C++ developers which should be
followed for Gemini software.

3.1 Modular Coding

Functions should be designed so that they contain 200 lines or fewer of executable C
statements. It would be permissible to exceed this in the case of large switch
statements which should not be broken.

Functions should typically perform a single logical operation.

Functions should have a single entry point and a single exit point.

3.2 Function Declarations

All functions externally available should be declared in a separate include file.

All functions in the module should be declared at the beginning of the file. Functions
that are internal to a source code module shall be declared static.

Function declarations shall be of the full ANSI prototype format.

Naming conventions are defined in Section 6.0, “Naming Conventions,” on page 20.

3.3 Data Declarations

External data references should be explicitly declared. Names of external data items
should reflect their location.

Implicit dependence on data type size in a particular C implementation should be
avoided. For example. when a 16-bit quantity is desired, make a typedef of INT16 to
what is actually a 16-bit integer on the particular machine. This will be placed in a
Gemini standard include file which will keep machine dependencies together and well
noted. This include file will be created and maintained by the GSCG.

Naming conventions have been established for different data types and usages,
especially for external shared data. See Section 6.0, “Naming Conventions,” on page 20.

Data types shall not be mixed across function boundaries. Type casting should be used
where necessary. Use of ANSI parameter checking in the compiler will help find such
errors.

3.4 Include Files

Use of include files is encouraged to clearly identify all constant information shared by
different modules in a project and to avoid duplication of information in files. Use file

Coding Practices

12 of 39 SPE-C-G009/05 Software Programming Standards

name only or a name relative to some defined directory. #include statements shall not
reference an absolute path.

Put all “address” type constants, such as hardware addresses, in include files where only
one change will be necessary, rather than requiring editing many files.

Define constants for frequently used items and use them in comparisons in preference to
numeric values. Such constants should be in include files, and well documented.

Use standard include files when they are available. Use the standard definitions in these
files to help standardize programs.

Include files shall be written so duplicate inclusions of the same file does not cause any
errors.

No storage allocation or initialization shall occur within any include file.

History information is given by the CVS/RCS Log keyword.

The *INDENT-OFF* and *INDENT-ON* pair protects the formatting of the
comments from modification by the “indent” program (see Section 11.2, “Indent,” on
page 36). The *+ and *- pair are used by the off-line utility WFLMAN to extract these
comments and produce documentation (see Section 11.1, “WFLMAN,” on page 36).

The include file template appears below.

/*
* Copyright 1996 Association of Universities for Research In Astronomy, Inc.
* See the file COPYRIGHT for more details.
*
* FILENAME:
* Put file name here
*
* PURPOSE:
* Short description of what the include file does
*
INDENT-OFF
* Log
INDENT-ON
*/

#ifndef MODULE_NAME
#define MODULE_NAME

/* put definitions here */

#endif /* MODULE_NAME */

Coding Practices

Software Programming Standards SPE-C-G009/05 13 of 39

3.5 Hardware Access

All access to hardware should be isolated to libraries. If a library does not provide the
needed functionality, fix the library instead of working around it.

Only one process or task should be allowed direct access to any raw hardware.

Libraries or functions should be developed to perform high level hardware actions, or to
replace repeated, confusing low-level library calls.

3.6 Errors

All error conditions should be considered and flagged for the calling routine's attention.
The existence of an error condition should be made available to the error logging and
error recovery systems. The types of errors defined by the Gemini software are listed in
the SRS [1]. The standard format of error messages, which includes identification of the
responsible module, is covered in the error logger description in the SRS. The formal
treatment of error and fault conditions can be found in the SDD [5].

3.7 GOTO

GOTO is considered a poor programming practice and should not be used when a normal
programming construct could be used instead. Use it only for non-recoverable errors
and exception handling. GOTO shall only be used to jump downward in the code,
typically to an error handler below the normal return.

Non-local GOTOs like setjmp and longjmp should not be used.

3.8 Style Considerations

Programmers who work on the code of others should respect the style of the original
programmer and not leave any “scars”. Follow the style of the original programmer,
even if it differs from your own or from the standard style. The only exception is to redo
the whole module. If you redo the whole module, you must adhere to the Gemini
standards.

Avoid programming “tricks”. Any code which is not immediately apparent should be
well commented.

Spelling and grammatical errors will not be tolerated.

3.9 Comments

Comments should be written to help some anonymous stranger understand the code
years later. Insufficiently commented code is unacceptable.

Comments should be kept up to date and should help explain the overall concept of the
algorithm, not exactly detail what the code statements already show.

Coding Practices

14 of 39 SPE-C-G009/05 Software Programming Standards

3.10 Computer Error Checking

Code shall compile without any warnings or errors under the gcc compiler using the
-ansi -pedantic -Wall options.

All code should be written to ANSI standards, especially as they involve prototype and
function declarations. When using an ANSI compliant compiler all checking of
parameter passing should be turned on.

3.11 Numeric Constants

Use #define to assign meaningful names for all constants. The names of constants
should use only upper case letters, digits and underscore.

Use of numeric constants or “magic” numbers in code or declarations should be avoided
except for obvious uses of 0, 1, et cetera.

3.12 Structure Definitions

Always define structures and unions by a typedef statement. Never use a structure or
union definition to declare a variable directly. All typedef statements should be
placed in include files.

3.13 Argument Passing

The passing of structures and unions by value is supported by the ANSI C standard and
is allowed within the Gemini Project.

3.14 Function Status Return

Routines that return good/bad type values should return predefined PASS or FAIL
values that are consistent over an entire project. PASS and FAIL will be defined in a
Gemini supplied include file.

Specific error information should be returned by other means:

• A program could use a global error variable. However, do not subvert the normal
operation of the standard UNIX errno global variable for your own purposes.

• A standard error handling function can be written to display all error messages. This
topic touches on the design of error logging and error recovery systems which is
covered in the SDD [5].

3.15 Templates

The use of the GCSG-supplied templates for include files and function/procedures is
required. These templates are found in Section 4.2, “Module Header,” on page 15 and
Section 4.3.1, “Function Header,” on page 16 of this document.

A template file should be copied to each new source file you create and then edited to
make a new source. A template should also be added to the top of existing files so they
conform to these standards.

Module Layout

Software Programming Standards SPE-C-G009/05 15 of 39

4.0 Module Layout

A module is any unit of code that resides in a single source file. Thus a module may be a
UNIX tool, a library of routines, or an application task. The conventions in this section
mainly define the standards for the module header which must come at the beginning of
every source module.

4.1 Version Control

Version control shall be provided by the CVS configuration management system. For
more information, see Section 14.0, “Source Control,” on page 39.

4.2 Module Header

The module header consists of the four mandatory blocks described below. The header
comes at the top of the file. The items should be in the order presented.

Version control identifier tag: This shall have the standard CVS form.

File name: Every module should include the name of its source. Use the file name only
or a name relative to some defined directory, rather than giving an absolute path.

Function name(s): The name of each function in the module must be listed along with
a single line comment describing what it does.

History: A history section should list every modification of the file, in a “who, when,
what” format. This history is for the entire file and is provided by the CVS Log
keyword.

If this file is used as a template for a state notation program (i.e. one ending with the file
extension .st or .stpp), the line declaring rcsid must be moved to after the snc
program statement and then escaped using the %% construct. Failure to do this will
cause the snc compiler to fail.

static char rcsid[]=”Id”;
/*
* Copyright 1996 Association of Universities for Research In Astronomy, Inc.
* See the file COPYRIGHT for more details.
*
* FILENAME
* Put file name here
*
* FUNCTION NAME(S)
* The name of each function in the module goes here along with a single
* line comment on what it does e.g.
* function1 - initializes the other functions, must be called first.
*

Module Layout

16 of 39 SPE-C-G009/05 Software Programming Standards

INDENT-OFF
* Log
INDENT-ON
*/

4.3 Function Layout

A function is a single C function. A module may contain a single function, a main()
and supporting functions, or a library of functions. All functions are basically treated the
same and each should have the same documentation. If a module contains a main()
that should come first, with all supporting functions below it.

4.3.1 Function Header
The function header is the comment block which shall be included before every
function. Each item in the function header should have the title and all items are
mandatory. If there are no entries for a particular item, still include the title, and enter
“none” for that item.

Each header should be done as a single large comment. The function header for the first
function must be in a separate comment from the module header. This header is
intended to be all another programmer needs in order to use the function. These items
will be stripped out and used as documentation for the function. The items should be in
the following order and follow the following formatting.1

Function name: The name of the function.

Invocation: An example C statement showing how the function may be called. See the
WFLMAN documentation for information on how to control the formatting of the
generated text (bulleted lists, enumerated lists, verbatim text, etc.)

Parameters: The formal parameters which are passed in to or back from the function.
The first token on the line should be indicate if this parameter is input, output, or both
input and output. Enclose the symbol within parentheses. Next give the parameter’s
name. After this give the parameter’s type, enclosed in parentheses. Finally describe the
parameter more fully giving usage and real world units the parameter represents. Any
limits on the input parameters should be documented here. The information for each
parameter may extend on to the following lines.

Function value: The value and type of the C function return. This should not be
confused with the parameters passed back by the function.

Purpose: Description of what the function does. If necessary, describe the algorithm
used. If similar functions exist, describe why this one is unique.

Description: A short description of the algorithm used by the function.

1. Already existing code which contains the following entries but perhaps in a different order
need not be modified just to place entries in the “correct” order.

Module Layout

Software Programming Standards SPE-C-G009/05 17 of 39

External variables: A list of all global variables which are referenced or may be
affected by this function. This includes globals external to the module as well as
variables declared globally within the module. Also include static variables local to the
function which may affect subsequent calls to the function.

Prior requirements: Document everything which must be done prior to calling this
function. Include other functions which must first be called, such as initialization
functions.

Deficiencies: List known problems, bugs or design limitations for this function.

Note that you may include other sections of documentation in this header, and you are
encouraged to do so if the complexity of the code warrants it. Expressions below which
appear in parentheses should actually preserve the parentheses. Expressions in square
brackets should be replaced with the appropriate information. The comment after the
“Parameters:” line should be left in place verbatim.

Also note that these header examples are formatted for C code, but these templates must
be used for all code. For example, Tcl/Tk code would use #+ to start comments, # to
continue comments, and #- to end comments.

Module Layout

18 of 39 SPE-C-G009/05 Software Programming Standards

/*
*+
* FUNCTION NAME:
* Place function name here
*
* INVOCATION:
* How to call the function or procedure
*
* PARAMETERS: (">" input, "!" modified, "<" output)
* (CODE) name ([C type]) [parameter description]
*
* FUNCTION VALUE:
* ([C type]) [return description]
*
* PURPOSE:
* Purpose of this routine
* Try to make the first line a succinct description
* as it will be used as a section title. Also do not
* terminate the first line with a period.
*
* DESCRIPTION:
* A short description of the algorithm used by the function
*
* EXTERNAL VARIABLES:
* Any external variables used in this function
*
* PRIOR REQUIREMENTS:
* Operations that must be performed before calling this function
*
* DEFICIENCIES:
* Any known problems with the function
*-
*/

4.3.2 Function Body
The function body is the minimum you could get away with, if there weren't any
standards like this. The parts of a typical function are listed below in the order they
should appear in the function definition. If an item is not needed then just omit that
section. It is not necessary to label each section, but you should separate sections with a
blank line.

Include files: Put all #include statements first. Any #defines that are required for
proper operation of the include files must be put before them. Comments are
encouraged.

Constant definitions: These are all the #defines used to declare constants used in
the function.

Macro definitions: These are all the #defines used to declare real macros as
opposed to constants. The distinction between this item and the one above may blur at

Module Layout

Software Programming Standards SPE-C-G009/05 19 of 39

times, so use your judgment. If a constant or macro definition is used non-locally it
should be placed in an include file.

Function definitions: This is a definition for any function declared static to this
module. If ANSI C is in use, this should be the full function prototype. External
function definitions should be obtained from #include files. Externally visible
functions in this module should be defined in this module’s include file.

Global variables: Declare all data items which are to be defined outside the function
definition. They may be external data items or globals local to the current module. If
local to the current module, the variable may also be initialized here.

Function declarations: This is the actual declaration of the function which includes all
the function's formal parameter declarations. Use the ANSI format.

Start function block: This is the { used to start the function block. It should be at the
left margin.

Local variables: All of the variables local to the block should be declared at the top of
the block. The suggested order is to declare char first, then int, working up to longer
data types. Each variable should be declared on a separate line with a comment to
identify its usage. Any initialization of local variables should be made quite apparent.

Body of function: See Section 5.0, “Source Code Format,” on page 20.

Normal return: This is the exit if no errors occur. Every function should have a
return() statement at the bottom. The main() function should have an exit()
call at the end. It is considered bad practice to “return” out of the middle of a function or
to “fall through the bottom” of a function.

Error return: If the function uses GOTOs to handle exceptions (allowed but not
recommended), they should jump to a location below the normal return. It should
handle whatever needs to be done to generate error messages or set up error codes, and
then return() with the appropriate error code.

End function block: This is the } used to close the function block. It should be aligned
with the { used to start the block.

Source Code Format

20 of 39 SPE-C-G009/05 Software Programming Standards

/*
* function name()
*/
#include <stdio.h>

/* constants */

/* functions */

/* global data */

main (int argc, char *argv[])
{

/* code */
}

5.0 Source Code Format

This is the graphic layout of the source code which gives it a characteristic appearance.
There are many “standards” in this area, given in many C language books, and seen in
many programmer's work.

The GNU source code formatting utility indent will be used to maintain a common
appearance for the C language programs created by Gemini work packages.

6.0 Naming Conventions

6.1 File Names

Unless the compiler or operating system requires special names, make use of common
extensions for file names.

TABLE 2. Filename extensions

File Type Name

C language source *.c

C++ language source *.C

Object module *.o

C language header files *.h

UNIX library (archive) files *.a

Tcl source files *.tcl, *.itcl

Tk source files *.tk, *.itk

PV-Wave procedures *.pro

CapFast EDIF documents *.sch

EPICS SNL source *.st, *.stpp

Tcl/Tk Style Guide

Software Programming Standards SPE-C-G009/05 21 of 39

6.2 Programming Construct Names

The following guidelines shall be used when naming Gemini project modules, routines,
variables, constants, macros, types, and structure and union members.

• Names shall be made meaningful and readable. Remember, this code must be
maintained by anonymous strangers at some distant time in the future.

• Names of routines, variables, typedefs and structure and union members shall be
written with upper and lower case and with no underlines. Each word except the first
is capitalized.

aVariableName

• All constants, and macros shall be all upper case with underlines separating the
words in the name.

A_CONSTANT_VALUE

• Every module has a short prefix (2-5 characters). This prefix shall be attached to the
modules name and to all externally available routines, variables, constants, macros,
and typedefs. Local names are not required to follow this convention.

modules: ccdLib.c

subroutines: ccdInitialize()

variables: ccdExposureTime

constants: CCD_TYPE

• Pointer variable names shall have a prefix “p” attached for each level of indirection.

ccdImage *pCcdFrame;

• Each shared memory area must have a structure name. The name must be
meaningful, and should also be the name of the shared memory access structure.
Using “sh” as the first part of the name will further identify it as shared memory. For
example shCcdControl might be the structure name for a memory block.

7.0 Tcl/Tk Style Guide

In general Tcl code written for the Gemini project shall conform to the standards
defined for C software in terms of comments, naming conventions, styles, and layout. A
good reference for Tcl/Tk development is the book Tcl/Tk Engineering Manual [12].
There are, however, a few Tcl/Tk specific observations to be noted for Gemini
developers.

EPICS Database short report form *.sr

EPICS Database link report *.link

EPICS Database one-line summary *.one

TABLE 2. Filename extensions

File Type Name

Tcl/Tk Style Guide

22 of 39 SPE-C-G009/05 Software Programming Standards

7.1 Namespace Pollution

To avoid namespace pollution incremental Tcl (also known as [incr tcl] or as itcl) is
recommended.

7.2 Built-in Features of Tcl

7.2.1 Dynamic Loading
All Tcl/Tk addons must use the dynamic loading capability of Tcl. The old method of
generating a new version of the wish executable is not acceptable.

7.2.2 -textvariable
Use of Tcl's -textvariable feature is very valuable. Use it for

• Accessing the current value in an entry widget.

• Setting the value of a label widget that needs to change as a result of user input or as
a status monitor.

7.2.3 trace
Tcl's trace facility can be very helpful if you need some action to be performed when
a particular variable changes. For example, here is an example of maintaining a
formatted version of a variable, displaying 2 significant digits.

trace variable prf w prfWritten
This procedure is called when the prf variable has changed.
We set the name of the menu button to show what was selected.
#
proc prfWritten {varName dummy op} {

global prf
global fmtPrf
set fmtPrf [format "8.2f" $prf]

}

7.2.4 Loading
Use dynamic loading for all compiled extensions. To load scripts, use the autoload
facility.

lappend auto_path /usr/local/lib/tcl_local $env(RDS_TCL_SCRIPTS)/lib $src_dir

7.3 Widgets

7.3.1 Meta Widgets
Use of incremental Tcl meta widgets is encouraged.

7.3.2 Widget Groups
When creating a set of widgets, write a short procedure to create each group of widgets.
The procedure should take the top level name (typically a frame) as an argument, and
should return that widget's name to the caller. This makes it easier to move groups of
widgets to a different place in the widget hierarchy, and tends to avoid having lots of
hard-wired pathnames.

Tcl/Tk Style Guide

Software Programming Standards SPE-C-G009/05 23 of 39

7.3.3 Widget References
Minimize using global variables or long widget pathnames. For example, you want to
avoid writing code that relies on knowing that another widget is called
top.next.lower.buttons.ok. It is far better to pass the widget name to a
function. However, if you do need to use a widget pathname in another function, it is
better to set a global variable with the widget name, rather than hardwiring the widget
name in that function.

7.3.4 Re-usable Functions
Build your functions to be re-usable. For example, pass “callback” procedures as
arguments, rather than hardwiring their names, or using global variables. E.g., if you
were writing a function that presented a dialog to accept a user supplied string, pass the
function an argument of a procedure to call when the “OK” button is pressed, rather
than setting a global variable.

7.3.5 Visual Style
Use -relief sunken to make entry boxes obvious.

7.4 Version Dependencies

It is not acceptable that software depends on the TCL_LIBRARY or TK_LIBRARY
environment variables. It is strongly advised that users do not set these variables. If a
module requires a specific version of Tcl/Tk, then it can be directly invoked using the
following as the first line of your script.

#!/usr/local/bin/wish4.0 -f
Copyright 1996 Association of Universities for Research In Astronomy, Inc.
See the file COPYRIGHT for more details.

Or you can write a shell wrapper to “do the right thing” and then invoke the script.

#!/bin/sh
Copyright 1996 Association of Universities for Research In Astronomy, Inc.
See the file COPYRIGHT for more details.
#
Shell wrapper for tkinfo.tcl. Idea is to allow PATH search for wish binary.
The "$@" syntax is important for getting proper quoting. This must be
a Bourne script: there is no way to get proper quoting and pass through "~"
in the csh.
#
cd /usr/local/lib/tkinfo
exec wish3.3 -f /usr/local/lib/tkinfo/tkinfo.tcl "$@"

EPICS Development

24 of 39 SPE-C-G009/05 Software Programming Standards

Part II VME Specific Development

This part addresses concerns only relevant to EPICS developers. This includes issues
such as naming conventions, coding style and visual style.

8.0 EPICS Development

The environment for running VME-based applications is EPICS. No WPR shall build
any VME-based application that does not use EPICS as its primary environment.

8.1 Database Creation

The EPICS database creation tool is CapFast. The use of either GDCT or DCT to create
EPICS databases is disallowed. In some cases it may be useful to hand-craft a database
directly into an ASCII short report. This should be limited to a very few exceptional
cases where the number of identical records is very large.

If a few database record and field naming conventions are followed, then it is possible to
generate a uniform interface to the OCS command layer.

Because of the arbitrarily complex nature of an EPICS database it is generally not
possible to define a one-to-one mapping between interface hardware module
descriptions (cardtype/cardno/signal) and instrument control functions. This is because
the mapping is dependent upon the interaction between the driver/device support
routines and the database itself. The EPICS database, with its use of forward processing,
input links, output links, and fanouts, allows the programmer to create database records
that by virtue of their link structures implement device control concepts at a higher level
of abstraction than what is expressed at the device driver level.

For example, an IR Detector Controller may have a database record that expresses the
concept of readout sequencing. Each of these readout actions in turn may have many
actual hardware actions to perform.

8.2 Name Conventions

EPICS records may have names up to 29 characters long; this size is a limitation within
EPICS. Records are named in a hierarchical manner in the following form:

<prefix>:<name1>:<name2>:...:<record>.<fieldname>

where <prefix>: is the name of the top-level CapFast diagram, <name1>:,
<name2>:, et cetera are the names of the hierarchical objects defined using CapFast,
<record> is the bottom level record name, and <fieldname> is the name of a field
within the record. The <fieldname>, if omitted, defaults to VAL. The entire record
name, including the “:” separators, must be no longer than 29 characters.

EPICS Development

Software Programming Standards SPE-C-G009/05 25 of 39

8.2.1 System Prefixes

In the Gemini Control System, each system has a unique prefix which, when applied
correctly, guarantees no name conflicts between systems. The prefixes for the principle
systems and TCS subsystems are defined in Table 3 on page 25.

The purpose of system prefixes is to insure uniqueness between all Gemini Systems. For
systems which are not listed, the developers, in agreement with the Gemini Project,
should choose a unique, four-letter abbreviation for their instrument. This abbreviation
will be declared in an instrument’s Software Design Document.

8.2.2 Instruments and Detector Controllers
The list of existing instruments is given in Table 4 on page 26. Instruments consist of the
Components Controller and the Detector Controller. All records comprising the
Components Controller will have a name beginning with the defined instrument prefix
and an additional prefix of “cc:”. For instance, the NIRS Components Controller
would have the prefix “nirs:cc:”.

All Detector Controllers are considered to be subsystems of an instrument. During
development of a Detector Controller an instrument prefix or other unique name may be
used. However, the secondary prefix must be “dc:”. For instance, the near-IR Detector
Controller during development would have the prefix “naac:dc:”, but once installed
as the detector for the NIRI and NIRS instrument it would have either the prefix
“niri:dc:” or “nirs:dc:”. Once a detector has been integrated with an instrument
the database names must be adjusted. This step is performed during the commissioning
of an instrument/detector pair.

TABLE 3. System Naming Conventions

System Prefix

Observatory Control System ocs:

Data Handling System dhs:

Core Instrument Control System cics:

Telescope Control System tcs:

Acquisition and Guiding ag:

Adaptive Optics ao:

Cassegrain Rotator cr:

Enclosure ec:

Primary Mirror m1:

Secondary Mirror m2:

Mount mc:

Interlocks is:

EPICS Development

26 of 39 SPE-C-G009/05 Software Programming Standards

8.2.3 Wavefront Sensors
For the most part, wavefront sensors follow the same conventions as science detectors.
Each WFS has both a detector and a mechanism that is used for positioning the detector.
These are separated in the EPICS name space by different prefixes.

The HRWFS is treated as a separate instrument and is not logically a subsystem of the
A&G. The Detector Controller will have the prefix “hrwfs:dc:” and the Components
Controller will have the prefix “hrwfs:cc:”.

Peripheral wavefront sensors are a subsystem of the A&G and will have the prefix
“ag:”.

The on-instrument wavefront sensor detectors are logically part of the A&G unit and
will be fully prefixed: for example, “ag:wfs:gmos:”.

The on-instrument wavefront sensor mechanisms are logically a part of the instrument
and will be prefixed with that instrument’s name. For example, the GMOS WFS
mechanism is “gmos:wfs:”.

8.3 EPICS Engineering Screens

Engineering screens will be created using dm, an EPICS extensions tool from
LANL [27]. An alternative method of creating engineering screens is the use of Tcl/Tk
as provided by the Gemini EPICS release.

8.3.1 dm Displays
Displays used for engineering purposes that are developed using dm should have a
similar look and feel about them. Custom graphics may be used where it increases
comprehension or simplifies use of the display.

1. Every screen must reference a central color template to minimize the number of col-
ors allocated. The Gemini color template file “colors.adl”, provided in the EPICS
release, should be used.

TABLE 4. Instruments and Detector Controllers

Instrument Detector Controller

High Resolution Wavefront Sensors hrwfs:

Gemini Multi-Object Spectrograph gmos:

High-Resolution Optical Spectrograph hros:

Michelle mch:

Mid-Infrared Imager miri:

Near-Infrared Imager niri:

Near-Infrared Spectograph nirs:

Near-Infrared Detector Controller naac:

EPICS Development

Software Programming Standards SPE-C-G009/05 27 of 39

2. Colors must be used for the purposes stated in Table 5 on page 27. The standard col-
ors defined within this file must not be modified. New colors should only be added
where absolutely necessary and only after seeking permission from the Gemini
project. They must be added at the end of the existing list. The standard color rules
defined in “colors.adl” should be used where possible. Other rules may be added for
specific purposes but Gemini must be notified of these rules and they must be made
as general as possible. Useful general rules will be incorporated into future releases
of “colors.adl”.

3. The template file “template.adl” should be used as a starting point for dm screens.
Some standard widgets may be obtained from this template, but the dm screen is not
restricted to these. Additional dm widgets may be used where necessary, especially
if this makes the screen easier to understand. Every screen must have an EXIT button,
as shown in “template.adl”. Custom widgets built using Tcl/Tk may be used where
“dm” lacks the required functionality.

4. Every system should have a top-level screen on which the overall health and status
of that system can be seen. If possible, a summary of the health and status of all of
the underlying mechanisms or subsystems should also appear on this screen.

5. Inputs and outputs should be clearly differentiated on all screens.

6. It must be possible to test the system-to-OCS interface using one or more of the sys-
tem’s dm screens. This is required for acceptance testing.

7. All dm screens should be saved to ASCII “.adl” files to guard against changes to dm
and edd. When a system is released every “.dl” file must also be saved as an “.adl”
file.

8.3.2 dm Colors
The Gemini project has adopted baseline templates for color tables and rules used in dm
displays. These templates are provided with the Gemini EPICS releases. The following
table describes the standard Gemini colors and their intended use with dm displays.

TABLE 5. Gemini EPICS color table

Use Index Color Name RGB Value/Flags

Default Foreground 1 White 255 255 255

Default Background 2 Black 0 0 0

Major Alarm/Error 3 Red 255 0 0 flashing

Minor Alarm/Error 4 Yellow 255 255 0 flashing

No Alarm/Good 5 Green 0 255 0

Grey Foreground 6 Grey75 191 191 191

Input Background 7 GeminiBrown 193 156 128

Output Background 8 Grey54 138 138 138

Exit Button Foreground 9 Black 0 0 0

Exit Button Background 10 Tan3 205 133 64

Title Foreground 11 Black 0 0 0

Subtitle Foreground 12 Blue 0 0 255

Heading&Box Foreground 13 NavyBlue 0 0 128

GeneralDisplay B/G 14 PeachPuff 255 218 185

EPICS Development

28 of 39 SPE-C-G009/05 Software Programming Standards

8.3.3 dm Color Rules
The following color rules are defined as Gemini standards in the color template. The
intended purpose of usage is also stated. These rules may not be modified. Additional
rules may also be created by developers, but they should be made as general as possible
and submitted to the Gemini Project for consideration.

alarm. “alarm” is the default color rule, which edd supplies for you. When an object on
a dm screen has its color modified by this rule, the color will turn flashing red when the
specified EPICS record goes into a MAJOR alarm state or flashing yellow when the
record goes into a MINOR alarm state. The color is green when there is no alarm and
cyan if the alarm state is invalid.

health. This rule is normally connected to a SIR record containing a description of the
health of a system. The object modified by this rule is displayed green if the health
record contains “GOOD”, flashing yellow if the health record contains “WARNING”,
flashing red if the health record contains “BAD” or cyan if the contents of the health
record could not be recognized.

limit. This rule turns an object flashing red if the value of an EPICS record drifts out of
the range specified.

flashifbusy. This rule is normally connected to a CAR record. It makes an object flash
between white and grey when the CAR record is “BUSY”. The object is a steady white
when the CAR record is “IDLE”, becomes light blue if the CAR record is “PAUSED” or
flashing red if the CAR record becomes “ERR”. The color changes to blue if the CAR
record becomes “UNAVAILABLE”.

BUSY 15 White 255 255 255 flashing

PAUSED 16 LightSlateBlue 132 112 255

IDLE 17 White 255 255 255

Default Color rule F/G 18 Cyan 0 255 255

Default Color rule B/G 19 Black 0 0 0

Default Graphics F/G 20 Black 0 0 0

Default Graphics B/G 21 Grey75 191 191 191

Generic Black 22 Black 0 0 0

Generic White 23 White 255 255 255

Generic Red 24 Red 255 0 0

Generic Green 25 Green 0 255 0

Generic Blue 26 Blue 0 0 255

Generic Yellow 27 Yellow 255 255 0

Generic Magenta 28 Magenta 255 0 255

Generic Cyan 29 Cyan 0 255 255

TABLE 5. Gemini EPICS color table

Use Index Color Name RGB Value/Flags

EPICS Development

Software Programming Standards SPE-C-G009/05 29 of 39

greyifbusy. This rule is similar to “flashifbusy”. It is normally connected to a CAR
record. Like “flashifbusy”, the display will turn light blue if the CAR record is
“PAUSED” or flashing red if the CAR record becomes “ERR”. The main difference is
that with this rule the display turns grey if the CAR record is “BUSY” and white when
the CAR record is “IDLE”.

greyifnotbusy. This rule is almost identical to “greyifbusy” except the display changes
to white when the CAR record is “BUSY” and grey when the CAR record is “IDLE”.

healthbusy. This is a complex rule that looks simultaneously at two EPICS records.
One of the records should be a health record and the other should be a CAR record. The
color of the display gives a summary of the status of a mechanism based on these two
records. The value stored in the health record takes priority, and the CAR record is only
looked at when health contains “GOOD”. Here is a summary of the rule:

• If health is “BAD”, color is flashing red.

• If health is “WARNING”, color is flashing yellow.

• If health is undefined, color is cyan.

• If health is “GOOD” then

—If CAR is “IDLE”, color is white.

—If CAR is “BUSY”, color is flashing white/grey.

—If CAR is “PAUSED”, color is light blue.

—If CAR is “UNAVAILABLE”, color is blue.

—If CAR is “ERR”, color is flashing red.

—If CAR is undefined, color is cyan.

• End if

8.4 Initialization of EPICS Databases

Most EPICS records may be initialized within the database with constants attached
through hardware inputs. However, there are occasions where the initialization depends
upon the application of the database; for example, the TCS must initialize the Gemini
North database with different values (latitude, longitude, et cetera) than the Gemini
South database. These variables are best initialized using the pvload utility.

8.5 Programming in EPICS

There are two extremes found in EPICS programming:

• Coding everything directly into the EPICS database

• Coding as little as possible into the EPICS database

In practice, neither of these is likely to be acceptable or desirable. Some common sense
is required in determining the appropriate point at which straight C code is a better
choice than connections between records in an EPICS database. For example, it would
definitely be inappropriate to recast SLALIB astrometric library routines into a database

EPICS Development

30 of 39 SPE-C-G009/05 Software Programming Standards

form. Instead, they can be encapsulated in EPICS subroutine records and fit into a
EPICS database seamlessly and easily, without modifying the C code in the routines.

There are three methods to select from when doing EPICS development:

• EPICS database code [24],

• C code encapsulated in record, device, or driver support [26],

• State-Notation Language (SNL) [28].

Which vehicle is most appropriate is a judgement call for each task being implemented.
The choice should be based upon the specific requirements and design of each task and
developers should be prepared to defend their choices. However, the order of the above
methods should be used to attack any problem. First, write as much of a database as
possible using existing EPICS records and devices. When this method cannot solve the
problem, look into writing a new record. In its simplest form, this could merely be the
use of a subroutine or similar record. For problems which deal directly with external
interfaces such as hardware, device support may be the only answer. Finally, use SNL
for sequencing state changes that are too complex or cumbersome for databases alone to
handle. The SNL code definitely should not contain any parameters that are not in the
database. Some sequencing also can be done within the database using the wait record,
for example.

8.5.1 EPICS database code
The arguments in favor of concentrating most of the structure in the database are:

• Code reuse. The main function of an EPICS software engineer is to write the record
support, device support, driver support, and client software that is required for the
application and not available elsewhere. Thus a major benefit of EPICS is software
reuse. If you analyze your problem and attempt to generalize it, then you are likely
to come up with a plug-in component that is of general use. SNL and subroutine
records fail in this major area.

• The many useful client side tools that already exist. These are made possible by the
client/server architecture and the simple name/value relationship that the database
represents. The database, at heart, is a name/value system. It is best to analyze where
it is deficient and fix it by adding suitable record types and client software.

• The fact that the database drawing is both documentation and truly represents the
database structure. This avoids the problem of documenting procedural code or SNL
with diagrams that can date quickly and are often difficult to update since they were
initially constructed with specialized tools. You are also forced to standardize your
representation, so in the long term more people have an ability to understand the
system.

However, attempting to put all information, regardless of its complexity, into a database
comprised solely of the standard EPICS records is a futile job. Databases cannot
implement every feature a complex task may require. When this point is reached, the
developer must look towards writing C code for new EPICS records or SNL code for the
sequencer.

EPICS Development

Software Programming Standards SPE-C-G009/05 31 of 39

8.5.2 Writing EPICS Support Routines
One of the features of EPICS is the ability to extend its functionality by writing
additional code for record, device or driver support. Information on how to write these
support routines is given in the EPICS literature; however, determining when and where
to write new routines is a matter of some importance.

A record is the basic element of any EPICS database. There are many types of records
currently available in EPICS, but sometimes none of them, or any combination of them,
can satisfy the requirements of the task. If you find that you can use a subroutine record
and write C code to do the job, then you may wish to consider writing a custom record
to replace the subroutine record. If you use this subroutine record in more than one
place, a new record is recommended.

New records should be generalized as much as possible to support reuse by other work
packages. Writing a record with a too specific function will remove any possibility of
sharing it. The Gemini Project should be informed of new records as they are being
written. New records should be written with device support hooks, even if the
envisioned use of the record does not include device support.

Device support for EPICS records should be written whenever a database will be
accessing hardware or virtual devices. Like record support, the implementation should
be generalized where possible to support code reuse. Most EPICS records have hooks
for device support, and these records should be used first. Device support should be
written for as broad a range of records as possible; for example, a numeric value from a
device should be accessible from a longin, ai, or stringin record.

Driver support should be written for any new hardware created by a work package. This
support should be written for the VxWorks operating system, and not necessarily for
EPICS. The goal of driver support is to provide drivers which operate in a VxWorks
environment without the use of EPICS. However, keep in mind while writing the driver
support that EPICS device support will be the ‘glue’ between the hardware and the
database. Keeping driver support to the standard EPICS device support calls of init,
init_record, get_ioint_info and read or write will simplify the device support layer.

8.5.3 State Notation Language Support
State Notation Language is one of the most powerful run-time tools in EPICS. With
SNL a very complex set of states can be defined to describe how a database should
transition. Because of this power, conditions which cannot be adequately described in a
database or record can be monitored and handled with ease. SNL should be used in
these situations; for example, when the state of operation of a database (booting,
configuring, running) needs to be selected, or when a global error condition needs to
change the way a database operates. The ability to disable record processing, and thus
prevent certain sections of the database from executing, is also a powerful capability of
the sequencer.

SNL code should not be used to directly control hardware or devices, to execute
subroutines, or to handle links between records that could be done by the database.
Doing these will remove any visibility into the database for the EPICS tool set. SNL
code must not contain any parameters that are not maintained in the EPICS database.
(The only exception being counters and other trivial variables concerned with the
control of the SNL itself).

UAE Development

32 of 39 SPE-C-G009/05 Software Programming Standards

The use of the variable substitution facility of the sequencer is encouraged, as this
allows several instances of the same SNL code to be run at the same time with different
variable settings, allowing SNL to be reused. If the CapFast macro substitution facilities
are used variables with the same purpose should be given the same names.

8.6 EPICS Lock-sets

EPICS records are often connected by flows that place the records on both ends of the
flows into the same ‘lock-set’. When processing occurs within any member of the
lock-set, no new inputs are accepted into the lock-set. If an input record is part of a large
lock-set, then the implication is that further attempts to use that input record are not
possible until all processing in the lock-set is completed. Consequently, care must be
taken when programming with EPICS databases to check that the lock-sets created in
the database are not unreasonable.

As a general rule of thumb, any link from one database record that produces a flow
triggering processing to occur in the other record places both records into the same
lock-set. So, for example, any forward links from one record to another put both of them
into the same lock-set. A less obvious case is that a “process-passive” link with one
record taking input from a second record puts both into the same lock-set.

In general, one must design in specific breaks to prevent the growth of a lock-set. This
may be done by using “non-process-passive” input fields, events (not recommended as a
general solution since the number of events is restricted), judicious use of state
machines, et cetera.

Please note that lock-sets are a useful method in EPICS database design to prevent input
values from changing during critical sections of code. Their use is not discouraged or
minimized, but rather should be carefully thought through during design and
development.

9.0 UAE Development

All EPICS development will be within the Universal Application Environment
(UAE) [23] developed by William Lupton (Keck Observatory) and Nick Rees (JACH).
The standard UAE templates for make and resource files are distributed by the Gemini
Project Office.

9.1 Setting up UAE

UAE provides a means of developing and releasing application code in a fashion similar
to the way EPICS code is developed. The UAE environment can be split into two
different areas: the development and the release directories. In the most trivial
application, the two directories are identical. For more sophisticated applications the
directories should be split to provide a released version independent of the development
environment.

UAE Development

Software Programming Standards SPE-C-G009/05 33 of 39

UAE also works well with the CVS source code management system; developers are
strongly encouraged to keep all EPICS work under CVS version control to facilitate the
distribution of prototypes and beta-releases to the Gemini Project.

A typical execution of the applSetup command would describe the install directory, the
UAE subdirectories to include or exclude, the subdirectories to compile, and
dependencies to other applications.

applSetup -install <release_pathname> \
-include config \
-targets mv167 \
-subdir_file Makefile.subdirs \
-depends <other_application_pathname>

9.2 Locating Files

9.2.1 Start-up files
The VxWorks start-up file should be located in startup/startup.vws. This file should
reference the file startup/local.vws for all site-specific startup information such as
routers and security.

All start-up files will obey the stylistic standards defined in Part I of this document.

9.2.2 Source code
The UAE templates provide two types of source code development directories, ‘src’ and
‘sys’. The difference between them is how the makefile compiles the final object file. In
the case of the ‘src’ directory there is one object file for every source file. For the ‘sys’
directory there is one object file for all the source files; the object file is named after the
directory, i.e., sys.o.

Developers should use either of these directories to hold their source code. The Makefile
in both directories should be edited to add the relevant source files in the SRCS.c rule.
Either directory structure may be copied into new directories at the top of the UAE
application.

9.2.3 Include Files
All include files should be placed in the application include directory.

9.2.4 Parameter Files
All parameter files such as lookup tables, pvload files, et cetera, which are used by an
EPICS application should be located in the application data directory.

9.2.5 CapFast Schematics and Symbols
All schematic and symbol files generated by CapFast should be located in the
application capfast directory. If the application has created new records and CapFast
symbols for these records, a new edb.def file must also be placed in the directory and
the Makefile.Unix file variable E2SR_SYSFLAGS must be changed.

E2SR_SYSFLAGS = -atec -d ../edb.def

CapFast Development

34 of 39 SPE-C-G009/05 Software Programming Standards

The edb.def file needs to have values for the new records added to it. The base version
of this file can be found at ${EPICS}/extensions/src/edif/lib/edb.def.

9.2.6 Record and device support
The ASCII files associated with records and device support should be place into one of
either ascii/cat_ascii or ascii/replace_ascii, depending upon whether the record or
device support adds to or replaces existing records. The file dbRecType.ascii lists the
record support information and the file devSup.ascii lists the device support
information.

9.3 Distributing a UAE application

Releases of Gemini applications such as the CICS or On-instrument Wavefront Sensor
packages are distributed as compressed tar files of the UAE environment. Object files
and site-specific files are omitted from the release.

9.3.1 Creating a release

A release file can be generated from the UAE application by running gmake release
from the top directory of the application. Instructions on how to install the release,
including the appropriate applSetup arguments, should be written in a top level
README file. The top level Makefile should be modified to include a gmake setup
rule.

9.3.2 Unpacking a release
To unpack a distributed release:

1. Create a directory to unpack the release into.
% mkdir rel; cd rel

2. Transfer the release file into this directory.

3. Unpack the release
% gunzip -c release.tar.gz | tar xf -

4. Follow the instructions in the README file to create the UAE environment.
gmake setup(if the developer has provided this feature).

5. Compile the application
gmake

10.0 CapFast Development

CapFast [25] is perhaps the best tool for EPICS database construction, largely because
its ability to hierarchically present an EPICS database permits information hiding and
reduces the visual complexity of the database. This section presents some recommended
practices when constructing EPICS databases with CapFast [29].

All CapFast drawings shall use a size C border around all symbols and wires in the
drawing. No elements of a drawing should be outside of this border. The symbol for the
size C border can be found in the EPICS parts list. Information about the drawing (file

CapFast Development

Software Programming Standards SPE-C-G009/05 35 of 39

name, designer, date, project, comments, revisions, et cetera) should be placed in the
appropriate information blocks in the lower right and upper right corners.

All symbols should be given names which are indicative of their purpose; default
naming should not be used. All symbol names should be made visible. Symbols should
have their hierarchal prefix given either by creating the PV property or using the name
property.

Whenever a symbol’s default properties are modified or appended, the altered property
should be made visible and displayed just below the symbol.

The use of bus wires in a drawing is encouraged where the need is evident. A bus wire
has the advantages of consuming less space and simplifying wiring. However, wires
selected to be grouped into a bus should have some strong association; for example, the
apply record’s OUTA-OUTH fields. Wires connected to the bus must be labelled.

10.1 Hierarchal Capabilities

EPICS database designers using CapFast are strongly encouraged to take full advantage
of the hierarchical capabilities of CapFast to encapsulate and clarify logical functional
units within the database. This is analogous to the use of appropriately-sized modules
when programming in traditional, text oriented languages. As a general rule-of-thumb, a
single view of a database should not contain more than ten functional blocks and fewer
if there is a large number of connections between the blocks.

Free text should be associated with the views to explain unusual or critical operational
steps.

Portions of EPICS databases that perform similar functions should be consistently
represented. Identical functional units should be described using a single CapFast
hierarchical object that is then instantiated as often as needed (much as a function in C is
used to avoid duplicating common code).

Other Tools

36 of 39 SPE-C-G009/05 Software Programming Standards

Part III Development Support

This part addresses procedures and tools to be used in support of software development.

11.0 Other Tools

11.1 WFLMAN

The WFLMAN program [37] is used to automatically scan source code and generate
documentation in a variety of formats. The comment-block standards defined in this
document are designed to work well with WFLMAN.

11.2 Indent

The indent program is use to format source code according to a standard set of rules.
This package is now maintained by the GNU people. You can retrieve indent via
anonymous FTP from prep.ai.mit.edu in the directory /pub/gnu. The options used for
indent for all Gemini project work are

indent -kr -cdb -sc
which generates the traditional Kernighan & Ritchie style with the comment delimiters
on blank lines and with an asterisk on the left side of all comments. For example:

/*
* This is a single line comment transformed by indent -kr -cdb -sc.
*/

The expansion of the above options for indent version 1.9.1 is given here.

TABLE 6. Indent flag settings for Gemini use

Option Description

-nbad Do not force blank lines after declarations.

-bap Force blank lines after procedure bodies.

-nbbb Do not blank lines after block comments.

-nbc Do not force newline after comma in declaration.

-br Put braces on line with 'if', et cetera, and structure declarations.

-c33 Put comments to the right of code in column 33.

-cd33 Put comments to the right of declaration in column 33.

-cdb Put comment delimiters on blank lines (not K&R).

-ce Cuddle else and preceding '}'.

-ci4 Continuation indent of 4 spaces.

-cli0 Case label indent of 4 spaces.

-cp33 Put comments to the right of '#else' and '#endif' statements in column 33.

-cs Put a space after the cast operator.

-d0 Set indentation of comments not to the right of code to 0 spaces.

-di1 Put variables in column 1.

Installation Directory Structure

Software Programming Standards SPE-C-G009/05 37 of 39

12.0 Installation Directory Structure

At this time the directory structure for the installation tree is still being designed. This
document will be updated to incorporate that design. A few aspects of the system
directory tree can be addressed now.

12.1 Developed Code

TBD

12.2 Tools

The GCSG tries to make use of existing third-party tools when possible. These include
such packages as the following.

• EPICS

• VxWorks

• GNU Tools

• Tcl/Tk

12.2.1 EPICS
The EPICS development environment will be built and installed, as much as possible,
according to the existing EPICS conventions with Gemini-specific recommendations
found in ICD 13 [21]. The source tree will be as distributed by the EPICS consortium
with minimal Gemini additions.

12.2.2 VxWorks
The VxWorks development environment will be built and installed according to the
recommendations of Wind River Systems with Gemini-specific recommendations found
in ICD 13 [21].

-nfc1 Do not format comments in the first column as normal.

-nfca Do not format any comments.

-i4 Set indentation level to 4 spaces.

-ip0 Indent parameter types in old-style function declarations by 0 spaces.

-l75 Set maximum line length to 75.

-lp Line up continued lines at parentheses.

-npcs Do not put space after the function in function calls.

-npsl Put the type of a procedure on the same line as its name.

-sc Put the '*' character at the left of comments (not K&R).

-nsob Do not swallow optional blank lines.

-nss Do not force a space before the semicolon after certain statements.

-ts8 Set tab size to 8 spaces.

TABLE 6. Indent flag settings for Gemini use

Option Description

Makefile Standard

38 of 39 SPE-C-G009/05 Software Programming Standards

12.2.3 GNU Tools
All GNU tools will be built and installed according to usual procedures. Executables
will be installed in /usr/local/bin. Documentation will be installed in
/usr/local/man, /usr/local/doc or /usr/local/info as appropriate.
Libraries and run-time support files will be installed in /usr/local/lib. In general,
by defining the base directory as /usr/local, all GNU tools will be correctly
installed.

12.2.4 Tcl/Tk
Tcl and Tk will be built and installed according to usual procedures. With recent
versions, this means that multiple versions may co-exist at the same time. For older
versions of Tcl/Tk, some modifications to the distribution are necessary so that it will
install in a multiple-version-friendly manner. (For example, changing the distribution to
use /usr/local/lib/tk3.3 rather than just /usr/local/lib/tk.) It is
strongly recommended that all Tcl/Tk code be maintained so it is compatible with the
most recent Tcl/Tk version approved for Gemini use.

12.2.5 Other Tools
In general, all other tools should be installed in the /usr/local tree as appropriate.
Some packages might best be installed in their own hierarchy, for example
/usr/local/vni for PVWAVE from Visual Numerics Inc.

12.3 Observing Home Directories

TBD

12.4 User Home Directories

The home directory layout for users at their home institutions is at their discretion. At
Gemini, all users will have a single home directory. For example, user’s home
directory would be /home/user.

13.0 Makefile Standard

All Makefiles used within the Gemini project shall be compatible with the GNU make
facility [35].

One of the most important areas addressed by the standard Makefile is the installation
of files into the destination directory tree. This issue has not yet been finalized. This
should not prevent design and development of work packages. This document will be
updated when this information is available.

13.0.1 Gemini Make Include
There shall be a Gemini Project standard make include file which will be provided by
GPCS. It will define a number of rules, macros and defines which will simplify and
standardize the work package Makefiles.

TBD

Source Control

Software Programming Standards SPE-C-G009/05 39 of 39

13.0.2 Work Package Makefiles
Each application or subsystem will have its own Makefile. It will include the
standard include file described above and will make use of its features. An example
work package Makefile is shown below.

TBD

14.0 Source Control

14.1 Gemini Standards

The Gemini standard for configuration management and source control is CVS [30].
Developers are encouraged to use this at their home institutions. The GSCG will
maintain a master repository for released versions of all software. Intermediate versions
of packages may be included as well at the discretion of the GSCG.

At this time, no standards have been set for directory layout or other constraints on
work packages for inclusion in the master repository. However, EPICS development
should adhere to the established EPICS idiom as used by UAE (see Section 9.2,
“Locating Files,” on page 33).

14.2 Gemini Master Source Distribution

A master source distribution will be derived from the most current released versions of
all packages in the Gemini master repository. For some packages such as EPICS, this
distribution will define the Gemini baseline and any deviation from this must follow
established change control procedures. For other packages, it is anticipated that having
other group’s code available will speed the climb up the learning curve and promote
interaction between WPRs.

At this time, procedures and timelines for the master source distribution have not been
set. It is anticipated that this will entail a custom CDROM mastered by the GSCG and
distributed to the WPR sites.

