
MEASURING COSMOLOGICAL PARALLAXES: PATH FINDING RECONNAISSANCE WITH GNAOS AND GEMS

MICHAEL PIERCE UNIVERSITY OF WYOMING

MOTIVATIONS: COSMOLOGICAL DISTANCES

- Recall Standard Measures for $(\Omega_K = 0)$ Includes:
 - Luminosity Distance (SN Ia): $D_L = (1 + z)D_M$
 - Angular-size Distance (BAO): $D_A = (1 + z)^{-1}D_M$
- Transverse (Parallax) Distance: $D_P = D_M$
 - New and Independent
 - Traditionally Dismissed as Too Difficult (10⁻⁹ as with 1 AU baseline) but:
 - 1) Earth's Motion wrt CMB Provides <u>Secular</u> Parallax Baseline
 - Baseline Increases 78 AU/year (precision absolute reference)
 - Still difficult: we need ~ 10⁻⁶ arcsec astrometry over 10 years!
 - 2) Signal is Magnified in Lensing Systems -> Cosmological Parallax)
 - Magnifications of ~ 5-7x (-> 4 x 10⁻⁶ arcsec) over 10 yrs, comparable to ELT Performance Requirements
 - Plausible measurement of cosmological parallax over 10yrs

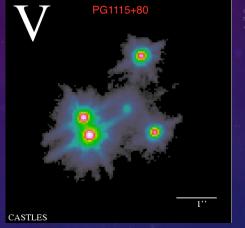
NARROW-FIELD ASTROMETRY WITH AO ON EXTREMELY LARGE TELESCOPES (ELTS)

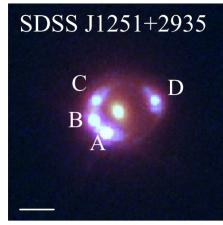
- ELTs + AO will Provide High-Strehl, Near-IR Imaging
- Unprecedented Imaging Resolution & Astrometry
 - 8 mas FWHM: 10x Hubble's, 5x JWST's
 - 4-6 μas Astrometry Possible Over Small Fields (Cameron et al. 2008; Ammons et al 2012)
- Cosmological Parallaxes Plausible
 - Signal Comparable to Milky Way SMBH Requirements (e.g., IRIS on TMT)
 - AO on TMT & GMT Would Provide All Sky Coverage of Parallactic Plane (maximizing parallactic signal)

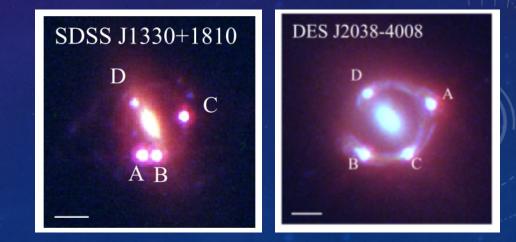
COSMOLOGICAL PARALLAX USING STRONG LENSES

- Advantages of Strongly Lensed Quasars
 - Large Δz Results in <u>Differential</u> Parallax
 - Ideally Suited for Small Field of View of ELTs
 - Single Source and Lens Simplifies Modeling
 - Point-source Images Ideal for Precision Astrometry (high s/n -> precision astrometry)
 - Approximately 1500 3000 Quad Systems Predicted from LSST, EUCLID & WFIRST (Oguri & Marshall, 2010)
 - Our Simulations of STRIDES Sample Systems
 - Magnifications from strong lensing systems ~ 3-5x (-> 4 x 10⁻⁶arcsec over 10 yrs), signal similar to Galactic center SMBH requirements for ELTs
 - Plausible Measurement with ELTs Over 10yr
 - What's Missing?: sub-halo and field masses

(See simulation details today in poster 108.11 by McGough & Pierce)

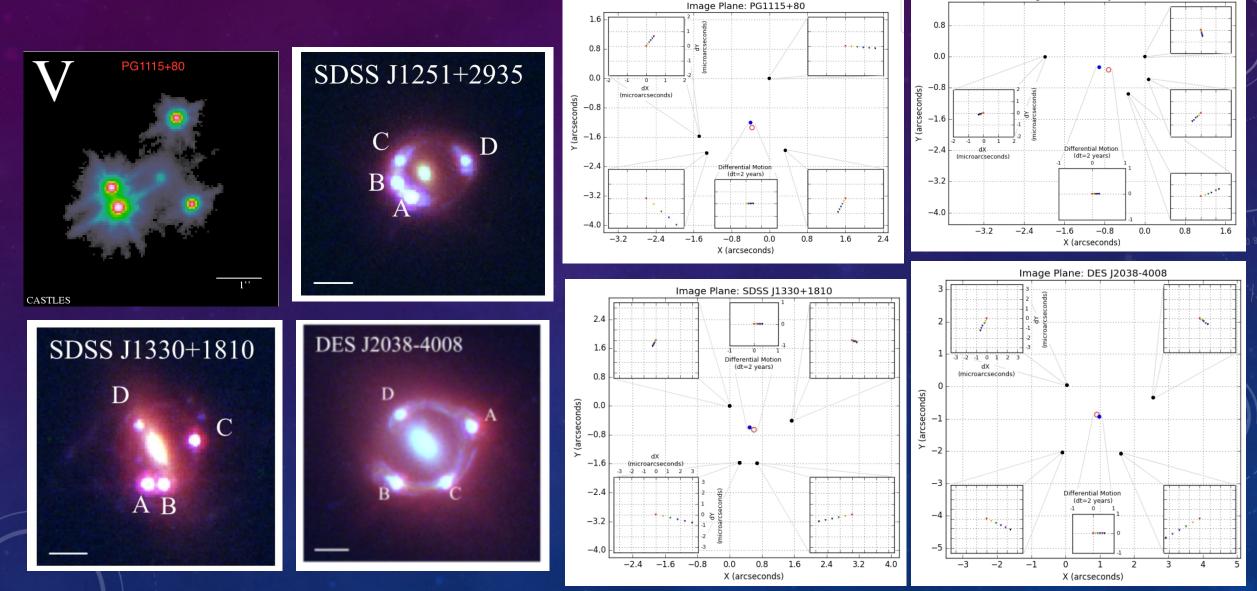

SDSS J1251+2935


COSMOLOGICAL PARALLAX SIMULATIONS OF STRONGLY LENSED QUASARS

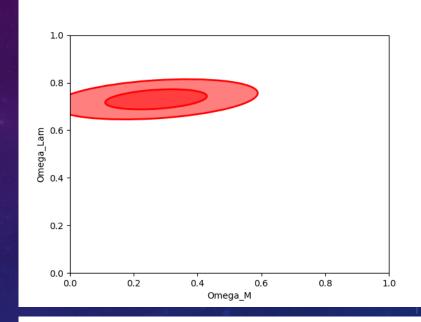

Selected Subset From STRIDES Systems

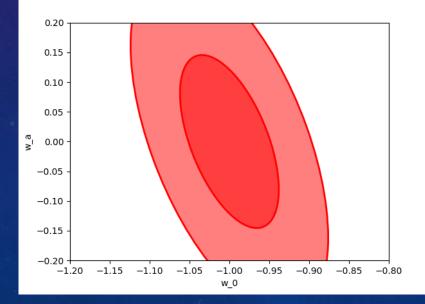
(Shajib et al. 2019)

- Quad Systems with Known Redshifts and HST Archival Images
- Use Lensmodel (Keeton, 2001) to Model System
- Compute Differential Cosmological Parallax for Λ CDM
 - Adopt the WMAP Best-fit Parameters
 - Compute the Expected Position of Source Relative to Lens (every 2 years over 10 year baseline)
 - For a Fixed Lens Model Adjust Source Position
 - Compute New Image Locations
 - Compare with TMT/IRIS Astrometry



COSMOLOGICAL PARALLAX SIMULATIONS OF STRONGLY




Image Plane: SDSS J1251+2935

PREDICTIONS FOR A SAMPLE OF 300 LENSED QUASAR SYSTEMS

- We Considered a Sample of 300 Quad Systems (+- 30-deg from Parallactic Plane)
- Assumed our 4 μas Simulation Results are Typical
- Assumed an ELT Astrometric Precision $\delta \pi = 4 \times 10^{-6}$ arcsec
- Assumed Random Peculiar Source Motions of 300 km/sec
- Fisher Matrix Modeling (Ding and Croft 2009)
 - Cosmological Constraints of 5% (1-σ)
 - Interestingly Different Constraints from SN Ia & BAO
 - Provides Simultaneous Constraint on H₀ of 2 %
 - (e.g., 71 +- 1.5 km/sec/Mpc)
- Measurement of Cosmological Parallaxes Look Feasible

GEMINI IMAGING SURVEY OF LENSED QUASARS

- Wide-field Surveys to Identify Strongly Lensed Systems
 - DES, LSST, WFIRST, Euclid
 - DES is Finding Hundreds of Lensed Quasars (1" separations)!
- Reconn. Imaging & Spectroscopy with <u>Gemini N & S</u> (NIR with AO)
 - Ideally, We'd Like 50 mas FWHM from GNAOS and An Upgraded GEMS
 - IFU Spectroscopy of Lens & Source -> Redshifts
 - Snapshot Survey 1000 Systems
- Allowing Down-selection to Most Promising Systems
 - Location wrt Parallactic Plane (CMB "equator")
 - Morphology of Lensed Quasars & Galaxies
 - Preliminary Lensing Models for Magnifications and Caustic Locations
- Gemini Survey Will Also Enable Development of Better Modeling Tools
 - Better Analysis and Modeling Techniques (Statistics)
 - Forward vs. Reverse Modeling for Resolved Sources

SUMMARY

- ELTs Will Provide Cosmological Parallaxes
 - ELT Time Will Be Extremely Expensive
- Gemini Can Provide Valuable Reconn. Survey Allowing:
 - Imaging For System Morphologies
 - IFU or GMOS Spectroscopy For Redshifts
 - Preliminary Lens Modeling to Identify Most Promising Systems
 - Sample Sizes Could Be a Few x 1000!
 - Efficient AO Target Acquisition Would Provide Necessary Survey Data
 - At ELT First-light We Will Have a Data-based Model of Cosmological Parallax

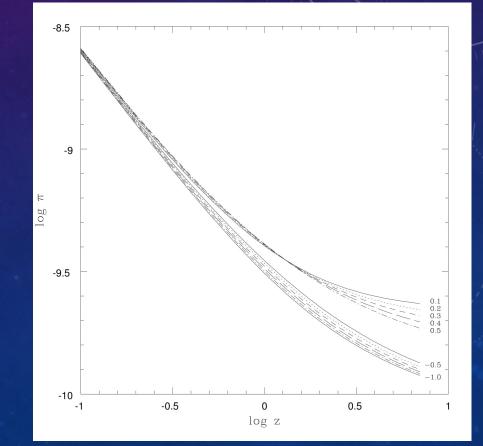
ADDITIONAL SLIDES

TRANSVERSE EXTRAGALACTIC MOTIONS AND THE PARALLACTIC DISTANCE

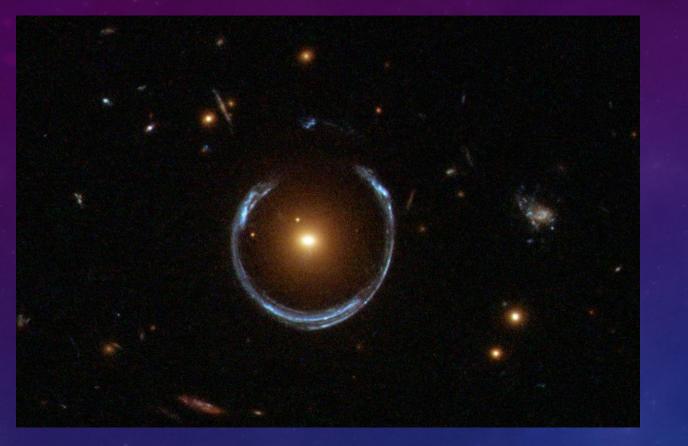
 Parallactic Distance is Related to the Transverse Co-moving Distance (Weinberg 1971)

 $D_P = R(t_0) \frac{D_m}{(1-kD_M^2)^{1/2}}$ where D_M is the transverse co-moving distance (Hogg 2000)

$$D_{M}(z) = \frac{D_{H}}{\sqrt{\Omega_{K}}} sinh\left[\sqrt{\Omega_{K}} \frac{D_{c}(z)}{D_{H}}\right] \quad \Omega_{K} > 0,$$


$$D_{M}(z) = D_{c}(z) \qquad \qquad \Omega_{K} = 0$$

$$D_{M}(z) = \frac{D_{H}}{\sqrt{\Omega_{K}}} sin\left[\sqrt{\Omega_{K}} \frac{D_{c}(z)}{D_{H}}\right] \qquad \Omega_{K} < 0$$


• where $D_H = \frac{c}{H_0}$ and $D_C = \frac{c}{H_0} \int_0^z \frac{dz}{H(z)}$ (the co-moving line of sight distance) where H(z) is the Friedmann equation (Peebles 2000, Huterer & Turner 2003): $\frac{H^2(z)}{H^2} = E(z)$ For Dark Energy:

$$E^{2} = \Omega_{M}(1+z)^{3} + \Omega_{K}(1+z)^{2} + \Omega_{x}exp\left[3\int_{0}^{z} (1+w(x)dln(1+x))\right]$$

• Numerical Integration -> parallactic distance = 206265 AU/ π < 10⁻⁹ arcsec!

LENSING OPTIONS FOR RESOLVED SOURCES

Galaxy-Galaxy Lensing (10 arcsec)

- Simple Lens Models but Complex Source
- Arc Structure Offers More "Sources" (root-N)
- Challenges for Measurement & Modeling
- Halo Sub-structure & Microlensing?


Cluster-Galaxy Lensing (multiple arcs)

- More Complex Lens Models
- Multiple Sources & DM Sub-structure
- All with Random Transverse Motions

NOTES ON LENSING FROM EXTENDED SOURCES

Extended Sources Near Lens Caustics

- For Point Masses θ_E is Proportional to Impact Parameter (just differentiate for changing deflection)
- For Isothermal Potentials θ_{E} is Independent of Impact Parameter
 - Einstein Radii Don't Change Much
 - Large Chances in Arc Magnifications (Extent)
- Arc Morphology Constrains Source Position
 - Can Predict Apparent Motion of Source wrt Caustic
- Large Changes in Image Structure (if present) with Small Changes in Impact Parameter
 - Concentrate on Most Favorable Systems

